Universal central extensions of linear groups over rings of non-commutative Laurent polynomials, associated $K_1$-groups and $K_2$-groups
نویسندگان
چکیده
We prove that linear groups over rings of non-commutative Laurent polynomials $D_{\tau}$ have Tits systems with the corresponding affine Weyl and universal central extensions if $|Z(D)|\geq 5$ $|Z(D)|\neq 9$. also determine structures $K_1$-groups identify generators $K_2$-groups.
منابع مشابه
commuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولCommutative Schur rings over symmetric groups II :
We determine the commutative Schur rings over S6 that contain the sum of all the transpositions in S6. There are eight such types (up to conjugacy), of which four have the set of all the transpositions as a principal set of the Schur ring. 2010 MSC: 20C05, 20F55
متن کاملUniversal Locally Finite Central Extensions of Groups
DEFINITION. A group G is called a universal locally finite central extension of A provided that the following conditions are satisfied. (i) A <= (G (the centre of G). (ii) G is locally finite. (iii) (/1-injectivity). Suppose that A <= B <= D with A a (D, that D/A is finite, and that q>: B -> G is an ^-isomorphism (that is, q>{a) = a for all as A). Then there exists an extension q>: D -*• G of (...
متن کاملNew Digital Signature Scheme Using Polynomials Over Non- Commutative Groups
Digital signatures are probably the most important and widely used cryptographic primitive enabled by public key technology, and they are building blocks of many modern distributed computer applications, like, electronic contract signing, certified email, and secure web browsing etc. However, many existing signatures schemes lie in the intractability of problems closure to the number theory tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsukuba journal of mathematics
سال: 2021
ISSN: ['2423-821X', '0387-4982']
DOI: https://doi.org/10.21099/tkbjm/20214501013